Network Laboratory - Wireless research Group

Interference-Aware Routing by modeling link capacity in Multi-hop 802.11-based WMN.

"Problem Formulation & Background"

Eiman Alotaibi

- Routing in Wireless Mesh Network (WMN) is not yet optimal.
- Cross-layer solution is required for an acceptable modeling and design.
- Selecting a good route is based on selecting high capacity links along the route.
- In WMN, link capacity is influenced by the interference that is caused by the surrounding co-channel links.

- In 802.11 protocol, based on CSMA/CA, the interference can be partially avoided using one of the two carrier sensing techniques:
 - 1- Physical Carrier Sensing (PCS) using Clear Channel Assessment (CCA) threshold, or
 - 2- Virtual Carrier Sensing (VCS) using RTS/CTS handshake.

- Using RTS/CTS in 802.11 can avoid interference (collisions caused by Hidden nodes) in the single-hop WMN.
- This is not true when we have multi-hop WMN → Extended Hidden node problem.
- Therefore, 802.11 alone can't handle the multi-hop WMN.
- Hence, while using 802.11, an intelligent techniques in routing, channel assignments, etc, need to be implemented.

- Hidden nodes:
 - Two transmitters not within hearing range, but one of them (or both) are within the interference range of the receivers.
- Exposed nodes:
 - Two transmitter within same hearing range, but non of them within the interference range of the receivers
- In 802.11, both hidden and exposed node problems cause throughput degradation.

Related Work

- Modeling link capacity in 802.11 passed through different stages of development in the literature:
 - 1- Simi Wired-base model (no interference).
 - 2- Consider interference:
 - → Single interferer only (not realistic),
 - → Allow no interfering link to be active,
 - → Consider one interference domain e.g. Sensing range (ignore hidden node problem),
 - → Consider one collision domain e.g. Interference range, or
 - → Consider two ranges (sensing/interference) based on physical details.

Modeling Approach

- PCS will be used instead of RTS/CTS because, in addition to, RTS/CTS can't avoid the multi-hop hidden nodes problem, it adds more overhead traffic.
- Capture the different effects from carrier sensing range and interference range.
- Using only high level parameters (Location/Distance) to model the interference-aware link capacity.
- This high level parameters are link-aware which satisfy the cross-layer condition.
- Multi-path routing.

 Input: Network topology, channel assignment, and load (traffic) matrix.

 Output: Set of optimal routes that maximizes network throughput.

Notations

<u>Input</u>

×	set of all nodes in the network.
N	total number of nodes in the network $(N = \aleph)$.
A_i	node n_i 's adjacent set of nodes.
C_{ij}^{max}	is the maximum link capacity of link L_{ij} .
$CS_{ij} \stackrel{\bigstar}{\bowtie}$	set of links $\in R_{cs}^{ij}$ of L_{ij} and assigned to the same channel of L_{ij} .
$I_{ij} \Leftrightarrow$	set of links $\in R_I^{ij}$ of L_{ij} and assigned to the same channel of L_{ij} .
Dcs_{ij}^{xy}	$= 1$ when L_{xy} is within R_{cs}^{ij} .
$DI_{ij}^{xy} \bigstar$	= 1 when L_{xy} is within R_I^{ij} and outside R_{cs}^{ij} .
d_{ij}	distance between node n_i and node n_j .
d_{ij}^{xy}	distance between L_{ij} and L_{xy} .
d_{ij}^{max}	maximum distance at which other co-channel links can not interfere with L_{ij} (= R_I^{ij}).
T^{sd}	traffic from source node n_s to destination node n_d .

Variables

C_{ij}	link capacity of L_{ij} .
$\alpha_{ij}^{sd,t}$	= 1 when $L_{ij} \in path(p_{sd})$ and the t^{th} unit of T^{sd} is carried from n_s to n_d by L_{ij} .
$\beta_{xy} \stackrel{\star}{\bowtie}$	= 1 when L_{xy} carries traffic.
$S^{sd} \star$	succeeded transmitted flow from node n_s to node n_d .

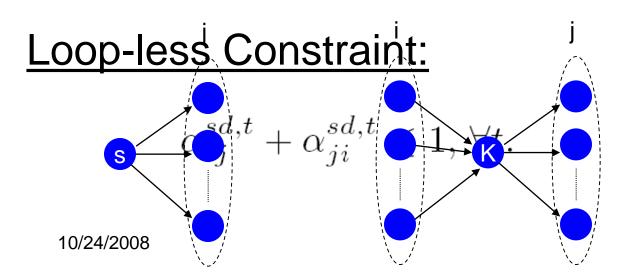
Objective Function:

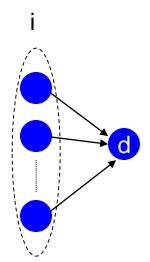
Maximize Throughput $\{ \text{Maximize } (\sum_{\forall (s,d)} S^{sd}). \}$

Traffic Constraint:

$$\beta_{xy} = \max_{\forall (s,d)} \alpha_{xy}^{sd,t}.$$

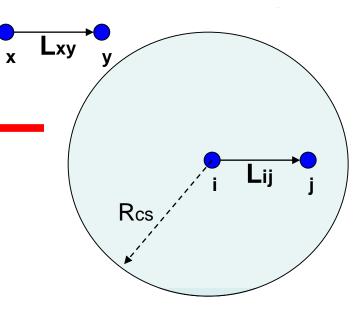
$$S^{sd} \leq T^{sd}, \forall (s,d)$$




Routing Constraints:

$$S^{sd} = \sum_{\forall j \in A_s} (\sum_{\forall t} \alpha_{sj}^{sd,t}), \forall (s,d).$$

$$\sum_{\forall i \in A_k} (\sum_{\forall t} \alpha_{ik}^{sd,t}) = \sum_{\forall j \in A_k} (\sum_{\forall t} \alpha_{kj}^{sd,t}), \forall k \in \mathbb{N}, \forall (s,d).$$


$$S^{sd} = \sum_{\forall i \in A_d} (\sum_{\forall t} \alpha_{id}^{sd,t}), \forall (s,d).$$

Capacity Constraints:

$$\sum_{\forall (s,d)} \sum_{\forall t} \alpha_{ij}^{sd,t} \le C_{ij}, \, \forall L_{ij}.$$

→ Special case (at most single interferer exist):

Lij 's interferer is located in the hearing range

Lij 's interferer is located in the interference range

Lij 's has no interferers

$$C_{ij}^{xy} = \{ (\frac{1}{2} * Dcs_{ij}^{xy} + \frac{d_{ij}^{xy}}{d_{ij}^{max}} * DI_{ij}^{xy}) * \beta_{xy} + (1 - \beta_{xy}) \} * \beta_{ij} * C_{ij}^{max}._{12}$$

Capacity Constraints:

→ General case (Multiple interferers exist):_

$$C_{ij} = \begin{cases} 0 & \beta_{ij} = 0, \\ \frac{1}{1 + \sum_{\forall L_{xy} \in CS_{ij}} \beta_{xy}} * C_{ij}^{max}, & Dcs_{ij}^{xy} = 1, \beta_{ij} = 1, \\ \frac{\sum_{\forall L_{xy} \in I_{ij}} \left[\frac{d_{ij}^{xy}}{d_{ij}^{max}} * (\beta_{xy} + (1 - \beta_{xy}) * \frac{d_{ij}^{max}}{d_{ij}^{xy}})\right]}{\sum_{\forall L_{xy} \in I_{ij}} (\beta_{xy} + (1 - \beta_{xy}))} * C_{ij}^{max}, & only if I_{ij} \neq \phi, DI_{ij}^{xy} = 1, \beta_{ij} = 1, \forall d_{ij}^{xy} < d_{ij}^{max} \\ C_{ij}^{max}, & Dcs_{ij}^{xy} = DI_{ij}^{xy} = 0, \beta_{xy} = 0, \beta_{ij} = 1(\forall L_{xy}). \end{cases}$$

$$C_{ij} = \left\{ \frac{1}{1 + \sum_{\forall L_{xy} \in CS_{ij}} \beta_{xy}} \right\} * \left\{ \frac{\sum_{\forall L_{xy} \in I_{ij}} \left[\frac{d_{ij}^{xy}}{d_{ij}^{max}} * (\beta_{xy} + (1 - \beta_{xy}) * \frac{d_{ij}^{max}}{d_{ij}^{xy}}) \right]}{\sum_{\forall L_{xy} \in I_{ij}} (\beta_{xy} + (1 - \beta_{xy}))} \right\} * \beta_{ij} * C_{ij}^{max}$$

Challenges

Solve a non-linear programming.

Avoid unrealistic approximations and assumptions.

Acknowledgment

- Thanks to:
 - Marwan,
 - Vishwanath,
 - Wei Wang.

Q & A

Thank you.